CALCULATING THE CONVECTION —RADIATION
HEATING OF MASSIVE BODIES

Yu. V. Vidin UDC 536.3:536.25

We present an iteration method for the calculation of the limit temperature field in ther-
mally massive bodies heated simultaneously by convection and radiation.

The process of heating solid materials to which heat is directed simultaneously by convection and
radiation is described, given a number of simplifying conditions, by the equations
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Here p = Bi/Sk = 0.
Problem (1)-(4) is classified as nonlinear.

When the heated item is thermally massive, it is comparatively easy to calculate the upper limit
of the sought temperature field 6 (%, Fo). In this case, the divergence between the boundary temperature
01im (. Fo) and the actual temperature (¥, Fo) for any values of the space coordinate (¥) and the time co-
ordinate (Fo) is quite small and suitable for engineering calculations.

To find 013y, @, Fo) we use the method of successive approximations. As the first approximation
we can use the solution of the equations
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where Bi; = Sk(p + 4) = const.
It is obvious that because we have the relationship
Bi1 > Sk [P + 1 —{— 9(1: FO) + 0 (l, FO) ”IL 93(11 FO)]

(the sign "=" pertains exclusively to the case in which Fo — ) the following condition will be satisfied:
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TABLE 1. Variation in Temperature at the Center and at the Sur-
face of an Unbounded Plate (Sk = 2.0; Bi = 0; 6 = 0.2; I = 1)

8 (0, Fo) 0 (1, Fo)

Fo according to*-fby the iter~ 5, % laccording to by the iter- 8, %

the data 2] |ation method the datal2] ation method
0,1 0,2146 0,2198 2,42 0,7548 0,7810 3,47
0,2 0,3012 0,3191 5,94 0,8391 0,8512 1,42
0,3 0,4087 0,4315 5,68 0,8774 0,8855 0,92
0,4 0,5070 0,5301 4,56 0,9026 0,9092 0,73
0,5 0,5910 0,6131 3,74 0,9215 0,9267 0,56
0,6 0,6614 0,6817 3,07 0,9364 0,9407 0,46
0,7 0,7201 0,7384 2,54 0,9483 0,9519 0,38
0,8 0,7689 0,7851 2,11 0,9579 0,9610 0,32
0,9 0,8093 0,8235 1,75 0,9656 0,9682 0,27
1,0 0,8428 0,8550 1,45 0,9719 0,9741 0,23

8, (@, Fo) > 6 (y, Fo).
Here the sign "=" is valid only for the instant of time ¥o = 0 and for Fo — =,

Consequently, the temperature 6, (¥, Fo) can be treated as a limit value with respect to 6 %, Fo).

However, it is possible to approximate ¢ (¢, Fo) more closely from above. Let us assume that we are
required to find the change in temperature through the cross section of a body for a certain instant of time
Fo = Fo*. We can then find a closer value than 6, (Y, Fo*) for the temperature, if we solve (1) under condi-
tions (2) and (4), with the following boundary conditions at the surface (¥ = 1):

80, (1, Fo)
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where
Bi, = Skp +'1+ 6, (1, Fo*) + 82(1, Fo*) + 63(1, Fo*)] = const.
It is probable that we can compile an inequality of the form
0, p, Fo*) >0, (P, Fo*) >0 (p, Fo*) (Fo=£0; o0),
since we satisfy the condition
Bi; >Bi,>Sklp + 1 + 0(1, Fo*) 4 62(1, Fo*) 4 6*(1, Fo*).

The subsequent iterations can be calculated in analogous fashion. As a rule, it is enough to limit
ourselves to the third approximation, because higher-order approximations yield but insignificant refine-
ments.

It should be noted that in each approximation step it is necessary to integrate the system of Eqgs.
(1)-(2) and (4) for the linear boundary condition
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where Bij is a constant which enables us to use rigorous analytical solutions [1}.

= Bi; {1 —0;(1, Fo), j=1,2 ..., (10)

In addition, the limit value for the temperature 6(¢, Fo) can be approached from "below," if as the
first approximation we take

Bi, =Sk(p + 1 -+ 08, + 624 03).

The outstanding feature of this method lies in the fact that it makes it possible, rather simply, to
establish the possible maximum calculation error. Thus, if I =1, Sk(l + p) = 2.0, p = 0, and 6, = 0.2, as
demonstrated by calculations (Table 1) executed by a finite-difference method, the error in the determina -
tion of the temperature exhibits its greatest value at the initial instant of time for the thermal center of the
item and it does not exceed 6%. For the surface of the body the overstatement is relatively smaller and
amounts approximately to 3.5%. Table 1 gives the results of the third iteration. With an increase in the
Fo number the divergence rapidly diminishes. The presence of a convection heat flow (p > 0) leads to a
reduction in the difference between the limit temperature field and the actual field, and this is all the more
pronounced, the greater the magnitude of the coefficient p.
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The accuracy of the method is also raised by increasing the complex Sk(l + p)(Sk(1 + p) > 2) and the
initial relative temperature 6, of the hody.

All other conditions being equal, the accuracy of determination for the temperature field in the case
of a sphere and a cylinder is greater than in the case of a plate.
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NOTATION

is the relative temperature;

is the temperature of the body, °K;

is the temperature of the medium, °K;

is the relative coordinate;

is the characteristic dimension of the body (for the plate it is half its thickness, and for
the cylinder and sphere it is the radius), m;

is the Fourier number;

is the Biot number;

is the Stark number;

are, respectively, the coefficients of thermal conductivity and thermal diffusivity, W
/m -deg and m2/h;

is the heat-transfer coefficient, W/ m? -deg;

is the apparent heat-transfer coefficient for radiation, W/m? (°K)%;

is the time, h;

is the shape factor for the body, equal to 1 for a plate, equal to 2 for a ecylinder, and
equal to 3 for a sphere.
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